Searching an Array – Binary Search Lecture 35 Section 9.1

Robb T. Koether

Hampden-Sydney College

Mon, Dec 3, 2018

Robb T. Koether (Hampden-Sydney College) Searching an Array – Binary Search

э

- The Binary Search Algorithm
- The Efficiency of the Algorithm

6

590

- The Binary Search Algorithm
- The Efficiency of the Algorithm

2 Examples

3 Assignment

- If the list is sorted, use a binary search.
- The binary search
 - Runs in O(log n) time.
 - Is very efficient.
 - Is suitable for enormous lists.

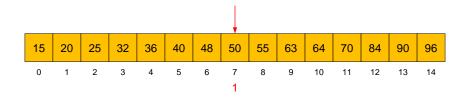
4 A 1

- The Binary Search Algorithm
- The Efficiency of the Algorithm

2 Examples

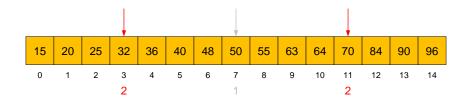
3 Assignment

< ロ ト < 同 ト < 三 ト < 三 ト


- The list must be sorted for this algorithm to work.
- The Algorithm
 - Begin by comparing the value to the middle element.
 - If the value matches the middle element, then we are done.
 - If the value is less than the middle element, then
 - Continue the search in the first half of the array.
 - If the value is greater than the middle element, then
 - Continue the search in the second half of the array.
 - Quit if there are no elements left to search in the sublist.

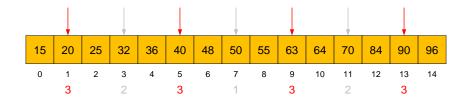
くぼう くほう くほう

15	20	25	32	36	40	48	50	55	63	64	70	84	90	96
 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14


æ

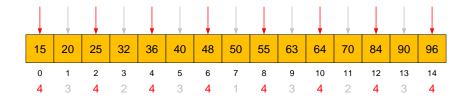
DQC

æ


DQC

æ

DQC


Analysis of the Binary Search

æ

DQC

Analysis of the Binary Search

æ

DQC

- Best case: 1 comparison.
- Worst case: 4 comparisons.
- Average case:

$$(1+2+2+3+3+3+3+4+4+4+4+4+4+4+4)/15$$

= 49/15
= 3.267 comparisons.

э

< ロト < 同ト < ヨト < ヨト

- The Binary Search Algorithm
- The Efficiency of the Algorithm

2 Examples

3 Assignment

- Best case requires 1 comparison.
- Worst case requires approximately log₂ *n* comparisons.
- Average case requires approximately (log₂ n) − 1 comparisons, which is O(log n).
- There is a library function <code>bsearch()</code> in <code>cstdlib</code> that performs a binary search.

• Can we perform a sequential search on a list of Dates?

э

< ロト < 同ト < ヨト < ヨト

- Can we perform a sequential search on a list of Dates?
- Can we perform a binary search on a list of Dates?

ヨトイヨト

- Can we perform a sequential search on a list of Dates?
- Can we perform a binary search on a list of Dates?
- Can we perform a sequential search on a list of Rationals?

モトィモト

4 A 1

- Can we perform a sequential search on a list of Dates?
- Can we perform a binary search on a list of Dates?
- Can we perform a sequential search on a list of Rationals?
- Can we perform a binary search on a list of Rationals?

- Can we perform a sequential search on a list of Dates?
- Can we perform a binary search on a list of Dates?
- Can we perform a sequential search on a list of Rationals?
- Can we perform a binary search on a list of Rationals?
- Can we perform a sequential search on a list of Points?

- Can we perform a sequential search on a list of Dates?
- Can we perform a binary search on a list of Dates?
- Can we perform a sequential search on a list of Rationals?
- Can we perform a binary search on a list of Rationals?
- Can we perform a sequential search on a list of Points?
- Can we perform a binary search on a list of Points?

モトィモト

- The Binary Search Algorithm
- The Efficiency of the Algorithm

3 Assignment

э

Examples

- BinarySearch.cpp
- BinarySearchCounter.cpp
- BinarySearchTimer.cpp

→ Ξ → < Ξ</p>

I > <
I >
I

- The Binary Search Algorithm
- The Efficiency of the Algorithm

2 Examples

э

Assignment

• Read Section 9.1.

Robb T. Koether (Hampden-Sydney College) Searching an Array – Binary Search

Mon. Dec 3, 2018 15 / 15

æ

DQC

<ロト < 回ト < 回ト < 回ト